
Technical Review of Gero Governance

Smart Contract Verification Team
July 7, 2022

Contents

1 Executive SummaRy and Scope 2

2 Audit 3
2.1 Methodology . 3
2.2 Findings . 3

2.2.1 Vulnerabilities . 3
2.2.2 Unclear Specification . 6
2.2.3 CodeQuality . 7
2.2.4 Other Concerns . 9

2.3 Conclusion . 9

1

Chapter 1

Executive Summary and Scope

This RepoRt is pResented without waRRanty oR guaRanty of any type. This report lists the most
salient concerns that have so far become apparent to Tweag after a partial inspection of the engineering
work. Corrections, such as the cancellation of incorrectly reported issues, may arise. Therefore Tweag
advises against making any business decision or other decision based on this report.

Tweag does not Recommend foR oR against the use of any woRK oR supplieR RefeRenced in
this RepoRt. This report focuses on the technical implementation provided by the project’s contractors
and subcontractors, based on their information, and is not meant to assess the concept, mathematical va-
lidity, or business validity of MLabs’s product. This report does not assess the implementation regarding
financial viability nor suitability for any purpose.

Scope and Methodology
Tweag looks exclusively at the on-chain validation code provided by MLabs. This excludes all the fron-
tend files and any problems contained therein. Tweag manually inspected the code contained in the
respective files and attempted to locate potential problems in one of these categories:

a) Unclear or wrong specifications that might allow for fringe behavior.

b) Implementation that does not abide by its specification.

c) Vulnerabilities an attacker could exploit if the code were deployed as-is, including:

• race conditions or denial-of-service attacks blocking other users from using the contract,
• incorrect dust collection and arithmetic calculations (including due to overflow or under-
flow),

• incorrect minting, burning, locking, and allocation of tokens,
• authorization issues,

d) General code quality comments and minor issues that are not exploitable.

Where applicable, Tweag will provide a recommendation for addressing the relevant issue.

2

Chapter 2

Audit

2.1 Methodology
Tweag analysed the validator scripts comprising the Gero Governance protocol, contained in the repos-
itory1 as of of commit 8f9f8520b1218159794456968682d41a2265a951. The names of the files considered
in this audit and their sha256sum are listed in Table 2.1.

Our analysis is based on the documentation provided by MLabs, and on Slack conversations with
MLabs. The relevant documentation files are listed in Table 2.2 and their contents will be referred to as
the specification of the protocol.

In the beginning of the audit we were unable to interact with MLabs’s contracts. Although the
underlying cause is still unclear, we believe it to be a specific version of plutus-apps, which is a depen-
dency of our auditing library cooked-validators. Tweag time boxed debugging this issue with MLabs
but we were unable to find and fix the underlying cause. Therefore, together with MLabs, we decided
to downgrade cooked-validators to a version that depended on a non-faulty plutus-apps and cherry-
pick any necessary newer library features. For convenience, we are packaging this custom snapshot of
cooked-validators in the vendor folder. Tweag does not commit to maintaining this custom version in
the future.

2.2 Findings
Table 2.3 lists our concerns with the current Gero Governance implementation based on our partial
exploration during a limited period of time. Throughout the rest of this section, we will detail each of
our findings.

2.2.1 Vulnerabilities
2.2.1.1 ■ User tokens can be stolen by public keys

Severity: Critical

This vulnerability can no longer be triggered as of commit a8ae4be99d3fbe8f6a60d43fb5db82c296a1fe81
of github.com/mlabs-haskell/gero-gov. We stress that this newer version of the code was not audited.
In particular, we have not investigated if the change introduced new vulnerabilities.

When closing two user positions, each carrying its user token, on the same transaction, it is possible
to burn only one of the tokens and pay the other to a public key. This is simple and cheap since an
attacker only needs to open two positions, close them, and get one of the tokens back.

1https://github.com/mlabs-haskell/gero-gov

3

github.com/mlabs-haskell/gero-gov
https://github.com/mlabs-haskell/gero-gov

sha256sum File Name

700f1ce...51196bc gero-onchain/src/Gero/Onchain.hs

6910827...906b788 gero-onchain/src/Gero/Onchain/Compiled.hs

b45a006...fc3dd29 gero-onchain/src/Gero/Onchain/Compiled/Gov.hs

29c6081...e0abe05 gero-onchain/src/Gero/Onchain/Compiled/Mint.hs

36beb6e...7fae841 gero-onchain/src/Gero/Onchain/Compiled/UserStake.hs

bade97e...924ec55 gero-onchain/src/Gero/Onchain/Contracts.hs

b6abacf...7f0f486 gero-onchain/src/Gero/Onchain/Contracts/Gov.hs

69e7105...7f6b7bb gero-onchain/src/Gero/Onchain/Contracts/Mint.hs

21d28ed...8df7c2b gero-onchain/src/Gero/Onchain/Contracts/RawContext.hs

127e00c...ce67596 gero-onchain/src/Gero/Onchain/Contracts/UserStake.hs

72894d9...ac4b9e8 gero-onchain/src/Gero/Onchain/Contracts/Util.hs

77c8cbd...eddc8f4 gero-onchain/src/Gero/Onchain/Types.hs

7c53d49...c2f2bc2 gero-onchain/src/Gero/Onchain/Types/Common.hs

5f829a4...c5c6348 gero-onchain/src/Gero/Onchain/Types/Gov.hs

a3123c4...5df39cd gero-onchain/src/Gero/Onchain/Types/Mint.hs

1198126...4165795 gero-onchain/src/Gero/Onchain/Types/UserStake.hs

Table 2.1: On-chain code source files and their sha256sum that were analysed as part of the review

sha256sum File Name

3961900...c7b5ca3 docs/CHANGELOG.md

6506393...3e3720f docs/gov-docs.md

Table 2.2: Documentation files and their sha256sum that were used as the specification

4

Severity Section Summary

■ Critical 2.2.1.1 User tokens can be stolen by public keys
■ High 2.2.4.1 Unclear role of Gov validator and token
■ Medium 2.2.1.2 The minting policy of the Gov token mostly relies on trusting the

administrator
■ Medium 2.2.3.1 Error reporting is lacking
■ Low 2.2.2.1 User ids are not reused
■ Low 2.2.2.2 No specification on burning Gov tokens
■ Low 2.2.2.3 Unclear meaning of zero votes
■ Low 2.2.2.4 gsPolicyIds is an unused and immutable piece of datum
■ Low 2.2.3.2 Dead code
■ Low 2.2.3.3 Undocumented code section regarding closing positions
■ Lowest 2.2.2.5 Specification mentions unimplemented features
■ Lowest 2.2.2.6 Various minor concerns with the specification
■ Lowest 2.2.3.4 Various minor code quality concerns

Table 2.3: Table of findings

This double satisfaction attack is possible because there are two kinds of withdrawal transaction,
depending on whether some stake remains in the user position or whether all stake is withdrawn. In
the latter case, the user stake token has to be burnt, while in the former case, it has to be paid back to
the UserStake script, together with the remaining stake. Since the script distinguishes the two cases
by the presence or absence of a continuing output, and since the token name of the burnt token is not
checked, it is possible to burn only one of the tokens when redeeming two UTxOs at once. The other
token can then be transferred to an attacker.

Once a user token belongs to the attacker’s public key, they can pay the token to the UserStake script
with an arbitrary UserStakeDetail datum. An interesting part of the datum to forge is the vote map,
and doing so makes it possible to vote with an arbitrarily high power without staking a corresponding
amount of Gero assets, in positions that carry a genuine user token.

The token theft is illustrated inmodule Audit.AttackTraces in trace stealTokenDuringDoubleClose.
An exploit that uses the stolen token to vote without staking the appropriate amount of Gero coins is
shown in trace freeVote.

2.2.1.2 ■ The minting policy of the Gov token mostly relies on trusting the administrator

Severity: Medium

The minting policy for the Gov NFT relies on the administrator to mint only one token and pay it
to the Gov script. In principle, the administrator could mint several tokens and keep one (or more) to
themselves. Even if a malicious administrator could only cause harm on the very first transaction, we
think it advisable to enforce these conditions in the minting policy.

We classify this vulnerability asmedium severity since it is possible and easy to inspect whether the
administrator behaved as expected right after the first transaction is issued.

5

This concern is part of the audit test suite under the heading “attacks on the transaction that mints
the Gov token”.

2.2.2 Unclear Specification
2.2.2.1 ■ User ids are not reused

Severity: Low

User identifiers (integers starting at 0, counted by gsTotalStakers), and therefore user token names,
are not reused. This means that user token names can grow without bound, which does not scale well
in the very long run.

2.2.2.2 ■ No specification on burning Gov tokens

Severity: Low

The Gov tokens cannot be burnt at the end of the life cycle of the contract, and the specification does
not state anything regarding closing Gov script outputs.

2.2.2.3 ■ Unclear meaning of zero votes

Severity: Low

A user or delegatee may cast a vote with a power of 0 as shown in trace voteZeroTr in Audit.Traces.
It is unclear from the specification whether a zero vote has a different intended meaning than casting a
Nothing-vote (which removes a vote), and should consequently show up in the vote map together with
the non-zero power votes.

2.2.2.4 ■ gsPolicyIds is an unused and immutable piece of datum

Severity: Low

After the end of the audit, we were informed that the form of this datum is necessary for the off-chain part
of the protocol, which was not part of the audited code.

The datum of Gov script outputs carries a list of allowed currency symbols for rewards, as stated by
the specification. There is currently no way to modify this list (none of the existing redeemers allow it),
yet it is part of the datum instead of the script parameters. Furthermore, it is never used and takes up
space on Gov outputs. Using the RewardAsAdmin redeemer, it is possible to pay a user any kind of asset,
provided the output value exceeds the input value; such transactions do not even involve spending the
Gov output containing the gsPolicyIds list. We suggest to clarify its role in the specification, move it
to the script parameters if it is not expected to change, or remove it altogether if it is truly unused.

2.2.2.5 ■ Specification mentions unimplemented features

Severity: Lowest

6

Some of the features mentioned in the section “Basic assumptions on the system” of gov-docs.md
are not implemented. We quote the relevant parts of the specification here.

• “We can record immutably that a proposal has been submitted to the governance protocol, and that
stakeholders can vote on it. The proposer can submit a transaction that records the proposal details
on-chain. Voters can then reference the proposal when they vote.”

There is no dedicated mechanism for proposals (e.g. a proposal script or a proposal redeemer for
the Gov script).

• “We can record immutably that the admin has injected revenue into the governance protocol. The
admin can submit a transaction that either locks revenue funds under the governance protocol or
transfers revenue funds directly to stakeholders.”

This does not specify where the funds should be locked. If they are locked on the Gov script, they
cannot be retrieved afterwards (lack of a dedicated redeemer).

• “We can record immutably that the admin has allocated funding to proposals in the governance
protocol, and how much was allocated to each proposal. The admin can submit a transaction that
allocates specific funding to specific proposals.”

There is no dedicated mechanism for proposals (e.g. a proposal script with a dedicated “fund”
redeemer).

2.2.2.6 ■ Various minor concerns with the specification

Severity: Lowest

Ambiguous use of greater than: ≥ or> The specification in gov-docs.md sometimes uses ambigu-
ous “greater than” wording mixed with “strictly greater than” and “less than or equal”. We suggest to
rephrase using either “greater than or equal” or “strictly greater than” to avoid confusion.

Unclear negative specifications The specification mentions several features of the contract that are
not part of the governance protocol (namely fair revenue distribution and funding allocation to propos-
als). It is unclear whether the “We can not …” sections in gov-docs.md refer to technical impossibilities,
design choices, limitations of the current implementation, or planned features.

2.2.3 Code Quality
2.2.3.1 ■ Error reporting is lacking

Severity: Medium

Error reporting is lacking, especially in the UserStake validator which makes uses of custom quasi-
quoted code (for “and” laziness). It is also lacking when it comes to failure of partial functions such as
when outputs are wrongly ordered.

7

2.2.3.2 ■ Dead code

Severity: Low

Similarly to issue 2.2.2.4, the code base contains a significant amount of dead code. For example, the
following list illustrates some unused functions:

• In Contracts.Util:

– sameTxOut

– rawDatumOf

– hasValidator

– ownAdress

– headFilterValidatorInput

• In Contracts.RawContext:

– getInputOut

– getOwnInput

– getOwnOutput (and therefore getTxOutAddress as well)
– getTxOutDatumHash

This is a concern because it increases the maintenance cost and the chance of introducing bugs by
using some function that was never tested because it was dead code.

2.2.3.3 ■ Undocumented code section regarding closing positions

Severity: Low

Comments and documentation are lacking for the UserStake validator. In particular, the pattern-
matching case for the Withdraw transaction that closes the user position is separated from the other
possible redeemers, including the regular Withdraw case for when some stake remains on the user po-
sition. We suggest to document this function and make explicit how all these cases complement each
other, especially since this is the code where the critical vulnerability 2.2.1.1 originates.

2.2.3.4 ■ Various minor code quality concerns

Severity: Lowest

Comment for fromSpendContext is wrong In module RawContext, the function fromSpendContext
also carries fromMintContext’s documentation comment by mistake. Furthermore, these comments
simply paraphrase the type of the documented functions without any added information, which would
be desirable since the functions are exactly the same apart from their types.

Naming of function currentTime The function currentTime in module Contracts.Util actually
extracts the end of the validity range of a transaction. The name is misleading, especially because the
current time is not available to validators.

8

Error reporting is phrased positively Debug messages are phrased in a way that describes suc-
cessful/expected cases such as “x and y match” if x and y are expected to match. Such error messages
are displayed when conditions are violated, therefore “x and y match” would be displayed when they
actually mismatch.

2.2.4 Other Concerns
2.2.4.1 ■ Unclear role of Gov validator and token

Severity: High

As it currently stands, it is unclear what is the role of the Gov validator. Based on our partial inves-
tigations of the code base, it seems like the Gov validator has two responsibilities:

• It counts the number of user stake positions opened so far, using that number to enforce unique-
ness of user stake tokens and positions.

• It constrains the initial datum on the user stake output and makes sure it is paid to the correct
UserStake script.

Uniqueness of user stake positions is already ensured by their representation as UTxOs, from the UserStake
script, suggesting the first responsibility above is superfluous. The second constraint could be enforced
by the minting policy of the user stake tokens directly. If the Gov validator is indeed only responsible
for the two items above, it could be possible to remove the Gov validator and token altogether, leading
to a substantial reduction of the amount of code.

2.3 Conclusion
This report outlines the 13 concerns that we have gathered while inspecting the design and code of
Gero Governance, pertaining to the code contained in the files listed in Table 2.1. As stated in Chapter 1,
Tweag does not recommend for nor against the use of any work referenced in this report. The code is
clear and well written. Nevertheless, the existence of critical and high severity concerns is a warning
sign.

9

	Executive Summary and Scope
	Audit
	Methodology
	Findings
	Vulnerabilities
	Unclear Specification
	Code Quality
	Other Concerns

	Conclusion

